Lesson Plan 2024-25 (Odd Semester)

(July to Dec 2024) Chemistry–B.Sc III Sem and V sem

Faculty: - Ms. Dr Varsha Sharma Department: -Chemistry

Month	July-August	August	September	October- November
BSc -III				
semester	Inorganic chemistry	Inorganic chemistry	Inorganic	Inorganic chemistry
	Structures & properties	Coordination Compounds	chemistry Isomerism	Non-aqueous Solvents
	of some compounds of	Werner's coordination	in coordination	Physical properties of a
	transition elements –	theory, effective atomic	compounds, valence	solvent, types of
	TiO2, VOCl2 , FeCl3 ,	number concept,	bond theory of	solvents and their
	CuCl2 and Ni (CO)4	chelates, nomenclature	transition metal	general characteristics,
	Organic Chemistry	of coordination	complexe	reactions in non
	Section A: Alcohols	compounds,	OrganicChemistry	aqueous solvents with
	Epoxides	Organic Chemistry	Section C: Ultraviolet	reference to liquid NH3
	Physical chemistry	Section B:	(UV) absorption	and liquid SO2
	Thermodynamics-I	Phenols	spectroscopy	Organic Chemistry
	Definition of	Physical chemistry	Physical chemistry	Section D: Ultraviolet
	thermodynamic terms:	`Zeroth Law of	Thermodynamics II	(UV) absorption
	system, surrounding etc.	thermodynamics, First	Calculation of w.q. dU	spectroscopy
	Types of systems,	law of thermodynamics:	& dH for	Physical chemistry
	intensive and extensive	statement, definition of	the expansion of ideal	Temperature
	properties. State and	internal energy and	gases under	dependence of
	path functions and their	enthalpy. Heat capacity,	isothermal and	enthalpy, Kirchoffs
	differentials.	heat capacities at	adiabatic conditions	equation. Bond
	Thermodynamic	constant volume and	for reversible process	energies and
	process. Concept of	pressure and their		applications of bond
	heat and work.	relationship. Joule's law –		energies
		Joule – Thomson		
		coefficient for ideal gass		
		and real gas: and		
		inversion temperature.		
B.Sc V	Physical chemistry	Physical chemistry	Physical chemistry	Physical chemistry
semester	Quantum Mechanic s-I	Physical Properties and	Spectroscopy-I	
	Black-body radiation,	Molecular Structure	Introduction:	Spectroscopy-II
	Plank's radiation law,	Optica l activity,	Electromagnetic	Vibrational spectrum
	photoelectric effect,	polarization – (clausius –	radiation, regions of	Infrared spectrum:
	heat capacity of solids,	Mossotti equation).	spectrum, basic	Energy levels of simple
	Compton effect, wave	Orientation of dipoles in	features of	harmonic oscillator,
	function and its	an electric field, dipole	spectroscopy,	selection rules, pure
	significance of	moment, included dipole	statement of	vibrational spectrum,
	Postulates of quantum	moment, measurement	Bornoppenheimer	intensity, determination
	mechanics, quantum	of dipole moment-	approximation,	of force constant and
	mechanical operator,	temperature method and	Degrees of freedom.	qualitative relation of
	commutation relations,	refractivity method,	Rotational Spectrum	force constant and
	Hamiltonial operator,	dipole moment and	Diatomic molecules.	bond energies, effects

Hermitian operator,	structure of molecules,	Energy levels of rigid	of anharmonic motion
average value of square	Magnetic permeability,	rotator (semi-classical	and isotopic effect on
of Hermitian as a	magnetic susceptibility	principles), selection	the spectra., idea of
positive quantity, Role	and its determination.	rules, spectral	vibrational frequencies
of operators in	Applica tion of magnetic	intensity distribution	of different functional
quantum mechanics, To	susceptibility, magnetic	using population	groups. Raman
show quantum	properties –	distribution (Maxwell-	Spectrum: Concept of
mechanically that	paramagnetism,	Boltzmann	polarizibility, pure
position and	diamagnetism and	distribution),	rotational and pure
momentum cannot be	ferromagnetics.	determination of bond	vibrational Raman
predicated		length, qualitative	spectra of diatomic
simultaneously,		description of non-	molecules, selectin
Determination of wave		rigid rotor, isotope	rules, Quantum theory
function & energy of a		effect	of Raman spectra.
partic le in one			
dimensional box,			
Pictorial representation			
and its significance			