Subject: Basic Mathematics. Semester: B.Com (Ist Sem)

Class- Minor

Month / week	First	Second	Third	Fourth	Fifth
July			Introduction to	Functions and	Homogeneity of
			Course and	Variables:	Functions and
			Overview of	Introduction to	Euler's Theorem
			Calculus Concepts	Differential	
				Calculus	
August	Partial	Differentiation of Implicit	Integration as	Methods of	Definite
	Derivatives up to	Functions; Maxima and	Anti-derivative	Integration:	Integration and
	Second Order and	Minima	Process, Standard	Substitution and	Applications
	Applications		Forms	Partial Fractions	(Areas, Surplus
					Problems
September	Nature of	Matrices: Definition, Types,	Matrix Algebra:	Determinants:	Determinants:
	Commodities	and Operations	Addition,	Properties and	Properties and
	Learning Curve;		Subtraction,	Calculation up to	Calculation up to
	Leontief Input-		Multiplication	Third Order	Third Order
	Output Model				
October	Adjoint and		System of Linear	System of Linear	REVISION
	Inverse of a	Adjoint and Inverse of a	Equations using	Equations using	
	Matrix; Cramer's	Matrix; Cramer's Rule	Matrices	Matrices	
	Rule	1.1001111, 0.1011101 0.110110			
NOVEMBER	Revision and	Final Davious and Drangestics			
NOVEMBER	Discussion of	Final Review and Preparation for End Term Examination			
		101 End Term Examination			
	Previous Papers				

TEACHING PLAN 2025-26 (ODD SEMESTER)

Department: Mathematics

Sub:- Function and Algebra (B.sc. Ist Sem)

Month	1st Week	2nd Week	3rd Week	4th Week	5 th Week
			Relation, Functions	Invertibility and	Relation between
			along with domain	inverse of functions,	the roots and
July			and Range,	One –to- one	coefficients of
July			Composition of	correspondence and	general polynomial
			function	the cardinality of a	equation in one
				set.	variable.
	Solutions of	Common roots and	Transformation of	Nature of the roots	Descarte Rule of
August	polynomial	multiple roots.	equations.	of an equation	Sign.
	equations having				
	conditions on roots				
	Solutions of cubic	Solutions of cubic	Matrix and its	. Matrix and its	Rank of a Matrix
	equations	equations	Types.	Types.	and its Applications
September	(Cardon's method). Biquadratic equations and their solutions.	(Cardon's method). Biquadratic equations and their solutions.			
October	Row rank, column rank	Elementary operations on matrices	Normal form, PAQ Form	Linera independence and dependence of rows and columns of matrices	Theorem on consistency of a system of linear rquations.

	Cayley Hamilton	Characteristics		
November	Theorem, Minimal polynomial of a	equation of a matrix, To find the inverse of a		
1 (o veniser	Matrix	Matrix		

TEACHING PLAN 2025-26 (ODD SEMESTER)

Department: Mathematics

Subject: Ordinary Differential Equations (MAJOR)

Class: B.Sc. Physical Science (IIIrd Sem)

Month/Week	1st	2^{nd}	3rd	4th	5th
JULY			Geometrical	Integrating	Lagrange and
			meaning of a	Factors, First	Clairaut's
			differential	order higher	Equation,
			equation,	degree	Equation
			Exact	equations	reducible to
			differential	solvable for	Clairaut's
			equation	x,y,p.	form,
					Singular form
AUGUST		Orthogonal	Linear	Homogeneous	Equations
		Trajectories:	ordinary	linear	reducible to
		Cartesian and	differential	ordinary	Homogeneous
		Polar	equations	differential	
		coordinates,	with constant	equations	
		Self-	coefficients		
		Orthogonal			
		Family of			
		curves			
SEPTEMBER	Linear	Transformation	Solution by	Reduction of	Method of
	differential	of the equation	operators of	order of a	variations of
	equations of	by changing	non-	differential	parameters
	second order	the dependent/	homogeneous	equation	

	: Reduction	independent	linear		
	to normal	variable	differential		
	form		equations		
OCTOBER	Method of undetermined coefficients	Ordinary simultaneous differential equations	Solution of simultaneous differential equation involving operators	Diwali Break	Simultaneous equation of the form dx/P= dy/Q =dz//R
			x(d/dx) or t(d/dt), Diwali Break		
NOVEMBER		Total differential equation, Condition for P dx + Q dy + R dz = 0 to be exact	General method of solving P dx + Q dy + R dz = 0 by taking one variable constant	Method of auxiliary equations	

Subject :- GROUPS AND RING

CLASS: B.Sc Physical Science (Vth Sem)

Month 1st Week	2nd Week	3rd Week	4th Week	5 th Week	
----------------	----------	----------	----------	----------------------	--

July				Definition of a group ,Subgroups and Subgroup criteria, Generation of groups, cyclic groups,	Cosets, Left and right cosets, Index of a sub-group Coset decomposition, Largrage's theorem and its consequences
August	Cosets, Left and right cosets, Index of a sub-group Coset decomposition, Largrage's theorem and its consequences	Normal subgroups, Quotient groups,	Normal subgroups, Quotient groups,	Homoomorphisms, isomophisms, automorphisms and inner automorphisms of a group.	Homoomorphisms, isomophisms, automorphisms and inner automorphisms of a group.
September	Automorphisms of cyclic groups, Permutations groups. Even and odd permutations. Alternating Groups	Cayley's theorem, Center of a group and derived group of a group	Introduction to rings, subrings, integral domains and fields	Introduction to rings, subrings, integral domains and fields	Characteristics of a ring. Ring homomorphisms, ideals (principle, prime and Maximal) and Quotient rings, Field of quotients of an integral domain.
October	Characteristics of a ring. Ring homomorphisms, ideals (principle, prime and Maximal) and	Euclidean rings, Polynomial rings, Polynomials over the rational field	Euclidean rings, Polynomial rings, Polynomials over the rational field	The Eisenstein's criterion, Polynomial rings over commutative rings	The Eisenstein's criterion, Polynomial rings over commutative rings

	Quotient rings, Field of quotients of an integral domain.			
November	Unique factorization domain	Unique factorization domain		

Sub:- REAL ANALYSIS (B.Sc Vth Sem)

Month	1st Week	2nd Week	3rd Week	4th Week	5 th Week
			Riemann integral,	Riemann integral,	The
			Integrabililty of	Integrabililty of	Fundamental
July			continuous and	continuous and	theorem of
			monotonic	monotonic	integral
			functions	functions	calculus.
	The Fundamental	Improper integrals	Improper integrals	Frullani's integral,	Continuity,
	theorem of integral	and their	and their	Integral as a	Differentiability
August	calculus. Mean	convergence,	convergence,	function of a	and
	value theorems of	Comparison tests,	Comparison tests,	parameter	integrability of
	integral calculus.	Abel's and Dirichlet's	Abel's and		an integral of
		tests,	Dirichlet's tests,		a function of a
					parameter.

	Continuity,	Definition and	limit points,	subspace of a	subspace of a
	Differentiability	examples of metric	interior points,	metric space,	metric space,
	and	spaces,	open and	equivalent	equivalent
September	integrability of an	neighborhoods	closed sets,	metrics, Cauchy	metrics,
	integral of a		closure and	sequences,	Cauchy
	function of a		interior, boundary	completeness	sequences,
	parameter.		points		completeness
	Cantor's	Cantor's intersection	Continuous	Continuous	sequential
	intersection	theorem, Baire's	functions, uniform	functions, uniform	compactness,
October	theorem, Baire's	category	continuity,	continuity,	Bolzano-
October	category	theorem, contraction	compactness for	compactness for	Weierstrass
	theorem,	Principle	metric spaces	metric spaces	property, total
	contraction				boundedness,
	Principle				finite
					intersection
					property
	sequential	continuity in relation			REVISION
	compactness,	with compactness,			
	Bolzano-	connectedness,			
	Weierstrass	components,			
November	property, total	continuity in relation			
	boundedness,	with connectedness			
	finite intersection				
	property				

Sub:- NUMERICAL ANALYSIS (B.Sc Vth Sem)

Month	1st Week	2nd Week	3rd Week	4th Week	5 th Week

July			Finite Differences operators.	Finding the missing terms and effect of error in a difference tabular values,	Interpolation with equal intervals: Newton's forward
August	Newton's backward interpolation formulae.	Interpolation with unequal intervals: Newton's divided difference,	Lagrange's Interpolation formulae, Hermite Formula.	Central Differences: Gauss forward interpolation formula	Gauss's backward interpolation formula
September	Sterling, Bessel Formula.	Probability distribution of random variables, Binomial distribution, Poisson's distribution	Normal distribution: Mean, Variance and Fitting.	Numerical Differentiation: Derivative of a function using interpolation formulae as studied in Sections –I & II.	Eigen Value Problems: Power method
October	Jacobi's method, Given's method	House-Holder's method, QR method, Lanczos method	Numerical Integration: Newton-Cote's Quadrature formula	Trapezoidal rule, Simpson's one third rule, Simpson's three- eighth rule	Chebychev formula, Gauss Quadrature formula, Numerical solution of ordinary differential equations
November	Single step methods-Picard's method, Taylor's series method	Euler's method, Runge-Kutta Methods			

Subject: Operational Research Technique

Semester: B.Com (IIIrd Sem)

Month / week	Ist	Second	Third	Fourth	Fifth
July			Introduction to	Linear	Graphical Method
			Operations	Programming	of Solving LPP with
			Research: Models,	Problems (LPP):	Illustrations
			Methodology, and	Introduction and	
			Classification	Formulation	
August	Standard Form of	Simplex Method:	Simplex Method:	Simplex Method:	Two-Phase Simplex
	LPP and Canonical	Concepts, Basic	Table Form and	Table Form and	Method
	Form	Feasible Solutions,	Applications	Applications	
		and Algorithm			
September	Big-M Method	Big-M Method	Duality in Linear	Duality in Linear	Transportation
			Programming:	Programming:	Problem –
			Concepts and	Concepts and	Introduction and
			Applications	Applications	Mathematical
					Formulation
October	Transportation	Transportation	Unbalanced	Assignment	Hungarian Method
	Problem – Methods	Problem – MODI	Transportation	Problem –	for Solving
	to Find Initial Basic	Method and	Problems and	Introduction and	Assignment
	Feasible Solution	Degeneracy Cases	Applications	Formulation	Problems
November	Applications of	Comprehensive			
	Assignment	Practice on LPP,			
	Problems in	Transportation, and			
	Business and	Assignment			
	Management	Problems			

Subject: Mathematical Foundation of Computer Science.

Semester: First Class- BCA

Month/ Week	1st	2 nd	3rd	4th	5th
JULY			Set, Set operation, Properties of Set operations	Subset, Venn Diagrams, Cartesian Product	Relation, Properties of Relations, Types of Relations
AUGUST	Equivalence Relation, closure of Relations	Warshell's Algorithm, Functions	Properties of Functions(Domain, Range)	Composition of functions, Surjective	Injective, Polynomial, Ceiling, Floor and Bijective Functions
SEPTEMBER	Counting and Recurrence Relation	Permutation, Combinations	Binomail Coefficients and Theorem	Recurrence Relations with Examples, the tower of Hanoi problem	Solving Recurrence relation with constant coefficients using characteristic equation root method.
OCTOBER	Basic terminologies of graphs, connected and disconnected graphs.	Subgraphs , paths and cycles	Complete graph, digraphs ,weighted graphs	Trees, properties of trees	Types of matrices, determinat of a matrix, symmetric and skew- symmetric matrices

NOVEMBER	Orthogonal	Application of		
	matrix,Rank of a	matrices to solve		
	matrix, inverse of a	system of linear		
	matrix	equation, Cayley –		
		Hamilton Theorem		